Abstract
The concept of a tandem hybrid concentrator solar module was demonstrated from a dye-sensitized TiO2 solar cell (DSSCs) and a silicon p-n junction solar cell. The test system employed DSSC and Si cells with indoor AM1.5G efficiencies of 9.1 and 18.1%, respectively. Two different optical filters were used to selectively reflect and concentrate near-infrared light from the DSSC onto the Si cell. On the basis of outdoor testing in a 2× concentrator-reflector arrangement, the tandem system generated 93 and 96% of the output power of directly illuminated Si cells under altostratus/cirrostratus and clear sky irradiances, respectively, despite a DSSC-to-Si active area ratio of only 0.92. Similar performance is expected at higher (5-10×) concentration ratios. The hybrid arrangement of visible- and IR-absorbing solar cells addresses the problem of lower performance of conventional concentrators under diffuse irradiance conditions. These proof-of-concept results suggest that system level efficiencies approaching 20% should be achievable.
Original language | English (US) |
---|---|
Pages (from-to) | 581-585 |
Number of pages | 5 |
Journal | Journal of Physical Chemistry Letters |
Volume | 2 |
Issue number | 6 |
DOIs | |
State | Published - Mar 17 2011 |
All Science Journal Classification (ASJC) codes
- General Materials Science
- Physical and Theoretical Chemistry