TY - JOUR
T1 - UV-associated decline in systemic folate
T2 - implications for human nutrigenetics, health, and evolutionary processes
AU - Lucock, Mark
AU - Beckett, Emma
AU - Martin, Charlotte
AU - Jones, Patrice
AU - Furst, John
AU - Yates, Zoe
AU - Jablonski, Nina G.
AU - Chaplin, George
AU - Veysey, Martin
N1 - Publisher Copyright:
© 2016 Wiley Periodicals, Inc.
PY - 2017/3/1
Y1 - 2017/3/1
N2 - Objectives: The purpose of this study was to examine whether UV exposure alters folate status according to C677T-MTHFR genotype, and to consider the relevance of this to human health and the evolutionary model of skin pigmentation. Methods: Total Ozone Mapping Spectrometer (TOMS) satellite data were used to examine surface UV-irradiance, as a marker of UV exposure, in a large (n = 649) Australian cross-sectional study population. PCR/RFLP analysis was used to genotype C677T-MTHFR. Results: Overall, cumulative UV-irradiance (42 and 120 days pre-clinic) was significantly negatively related to red cell folate (RCF) levels. When the cohort was stratified by MTHFR-C677T genotype, the relationship between UV-irradiance (42 days pre-clinic) and RCF remained significant only in the cohorts containing carriers of the T allele. Statistically significant z-score statistics and interaction terms from genotype and UV-irradiance (p-interaction) demonstrated that genotype did modify the effect of UV-irradiance on RCF, with the largest effect of UV being demonstrated in the 677TT-MTHFR subjects. Conclusions: Data provide strong evidence that surface UV-irradiance reduces long-term systemic folate levels, and that this is influenced by the C677T-MTHFR gene variant. We speculate this effect may be due to 677TT-MTHFR individuals containing more 5,10CH2-H4PteGlu, and that this folate form may be particularly UV labile. Since UV-irradiance lowers RCF in an MTHFR genotype-specific way, there are likely implications for human health and the evolution of skin pigmentation.
AB - Objectives: The purpose of this study was to examine whether UV exposure alters folate status according to C677T-MTHFR genotype, and to consider the relevance of this to human health and the evolutionary model of skin pigmentation. Methods: Total Ozone Mapping Spectrometer (TOMS) satellite data were used to examine surface UV-irradiance, as a marker of UV exposure, in a large (n = 649) Australian cross-sectional study population. PCR/RFLP analysis was used to genotype C677T-MTHFR. Results: Overall, cumulative UV-irradiance (42 and 120 days pre-clinic) was significantly negatively related to red cell folate (RCF) levels. When the cohort was stratified by MTHFR-C677T genotype, the relationship between UV-irradiance (42 days pre-clinic) and RCF remained significant only in the cohorts containing carriers of the T allele. Statistically significant z-score statistics and interaction terms from genotype and UV-irradiance (p-interaction) demonstrated that genotype did modify the effect of UV-irradiance on RCF, with the largest effect of UV being demonstrated in the 677TT-MTHFR subjects. Conclusions: Data provide strong evidence that surface UV-irradiance reduces long-term systemic folate levels, and that this is influenced by the C677T-MTHFR gene variant. We speculate this effect may be due to 677TT-MTHFR individuals containing more 5,10CH2-H4PteGlu, and that this folate form may be particularly UV labile. Since UV-irradiance lowers RCF in an MTHFR genotype-specific way, there are likely implications for human health and the evolution of skin pigmentation.
UR - http://www.scopus.com/inward/record.url?scp=84992364671&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84992364671&partnerID=8YFLogxK
U2 - 10.1002/ajhb.22929
DO - 10.1002/ajhb.22929
M3 - Article
C2 - 27771938
AN - SCOPUS:84992364671
SN - 1042-0533
VL - 29
JO - American Journal of Human Biology
JF - American Journal of Human Biology
IS - 2
M1 - e22929
ER -