Abstract
A novel light-enhanced antimicrobial treatment was developed by exposing gallic acid (GA) to UV-C light. GA (15 mM) solution was exposed to UV-C for 30 min and subsequently incubated with E. coli O157:H7 for 30 min to achieve a 3.2 ± 0.2 log CFU/mL reduction. The antimicrobial activity is affected by the irradiation duration, wavelength, and pH of solution. The addition of benzenesulfinic acid (BSA) to UV-C irradiated GA lowered (P < 0.05) its antimicrobial activity, indicating that quinones contributed to its overall antimicrobial effect. In addition, the attenuated (P < 0.05) antimicrobial activity of UV-C exposed GA in the presence of reactive oxidative species (ROS) quenchers, the generation of hydrogen peroxide, and increased levels of intracellular oxidative stress detected in E. coli O157:H7 illustrated that ROS also played a role in the antimicrobial effect of UV-C irradiated GA. UV-C irradiated GA could be applied as a novel antimicrobial in food systems.
Original language | English (US) |
---|---|
Pages (from-to) | 303-312 |
Number of pages | 10 |
Journal | Food Chemistry |
Volume | 287 |
DOIs | |
State | Published - Jul 30 2019 |
All Science Journal Classification (ASJC) codes
- Analytical Chemistry
- Food Science