Validation and uncertainty quantification of a two-phase, multidimensional PEMFC computer model using high-resolution segmented current collector data

Brian Carnes, Ken S. Chen, Liang Hao, Gang Luo, Ji Yan, Chao Yang Wang, Dusan Spernjak

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

We present work towards validating a multidimensional computer model capable of simulating two-phase, non-isothermal transport in PEMFCs under a wide variety of conditions. The specific hardware used to gather the experimental data is a state-of-the-art 10x10 segmented bipolar plate attached to a 50 cm2 single cell. The five-way serpentine flow field, bipolar plates and membrane-electrode assembly are all resolved in the model. The data has been collected at Los Alamos National Laboratories under several sets of operating conditions, including different relative humidity of 25%, 50%, 75% and 100% RH and temperatures of 80 and 60 C. Current best practices for model validation are applied, including uncertainty quantification (UQ). Variability in measured data is incorporated by included uncertainty bounds on the data (using either interval bounds or statistical confidence intervals). Sensitivity analysis of model input parameters on predictions is performed using an interface to the the DAKOTA toolkit. The model is calibrated using cell polarization data with uncertainty and then used to predict the local current distribution data.

Original languageEnglish (US)
Title of host publicationASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology. Collocated with ASME 2011 5th International Conference on Energy Sustainability, FUELCELL 2011
Pages773-779
Number of pages7
DOIs
StatePublished - 2011
EventASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology. Collocated with ASME 2011 5th International Conference on Energy Sustainability, FUELCELL 2011 - Washington, DC, United States
Duration: Aug 7 2011Aug 10 2011

Publication series

NameASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology. Collocated with ASME 2011 5th International Conference on Energy Sustainability, FUELCELL 2011

Other

OtherASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology. Collocated with ASME 2011 5th International Conference on Energy Sustainability, FUELCELL 2011
Country/TerritoryUnited States
CityWashington, DC
Period8/7/118/10/11

All Science Journal Classification (ASJC) codes

  • Energy Engineering and Power Technology
  • Fuel Technology
  • Renewable Energy, Sustainability and the Environment

Fingerprint

Dive into the research topics of 'Validation and uncertainty quantification of a two-phase, multidimensional PEMFC computer model using high-resolution segmented current collector data'. Together they form a unique fingerprint.

Cite this