Validation of embedded element method in the prediction of white matter disruption in concussions

T. Garimella Harsha, Reuben H. Kraft

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

A better understanding of the axonal injury would help us develop improved diagnostic tools, protective measures, and rehabilitation treatments. Computational modeling coupled with advanced neuroimaging techniques might be a promising tool for this purpose. However, before the models can be used for real life applications, they need to be validated and cross-verified with real life scenarios to establish the credibility of the model. In this work, progress has been made in validating a human head finite element model with embedded axonal fiber tractography (using embedded element method) using pre-and post-diffusion tensor imaging data (DTI) of a concussed athlete. Fractional anisotropy (FA) was used to determine the microstructural changes during injury. These damaged locations correlated well with the damaged locations observed from the finite element model. This work could be characterized as a first step towards the development of a more comprehensively validated human head finite element model.

Original languageEnglish (US)
Title of host publicationBiomedical and Biotechnology Engineering
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791850534
DOIs
StatePublished - 2016
EventASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016 - Phoenix, United States
Duration: Nov 11 2016Nov 17 2016

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume3

Other

OtherASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016
Country/TerritoryUnited States
CityPhoenix
Period11/11/1611/17/16

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Validation of embedded element method in the prediction of white matter disruption in concussions'. Together they form a unique fingerprint.

Cite this