Skip to main navigation
Skip to search
Skip to main content
Penn State Home
Help & FAQ
Home
Researchers
Research output
Research units
Equipment
Grants & Projects
Prizes
Activities
Search by expertise, name or affiliation
Vanishing viscosity and backward Euler approximations for conservation laws with discontinuous flux
Graziano Guerra,
Wen Shen
Mathematics
Center for Computational Mathematics and Applications (CCMA)
Center for Interdisciplinary Mathematics
Research output
:
Contribution to journal
›
Article
›
peer-review
6
Scopus citations
Overview
Fingerprint
Fingerprint
Dive into the research topics of 'Vanishing viscosity and backward Euler approximations for conservation laws with discontinuous flux'. Together they form a unique fingerprint.
Sort by
Weight
Alphabetically
Mathematics
Discontinuous Flux
100%
Vanishing Viscosity
83%
Conservation Laws
61%
Viscous Conservation Laws
48%
Compensated Compactness
44%
Entropy Inequality
42%
Interface Conditions
41%
Riemann Problem
36%
Functional Analysis
34%
Viscosity Solutions
34%
Approximation
33%
Maximum Principle
31%
Smoothness
27%
Requirements
26%
Trace
26%
Cauchy Problem
25%
Tend
24%
Semigroup
24%
Unknown
21%
Zero
16%
Class
9%
Engineering & Materials Science
Conservation
63%
Fluxes
53%
Viscosity
53%
Functional analysis
29%
Maximum principle
28%
Entropy
18%