TY - JOUR
T1 - Variable faint optical sources discovered by comparing the POSS and SDSS catalogs
AU - Sesar, Branimir
AU - Svilković, Domjan
AU - Ivezić, Željko
AU - Lupton, Robert H.
AU - Munn, Jeffrey A.
AU - Finkbeiner, Douglas
AU - Steinhardt, William
AU - Siverd, Rob
AU - Johnston, David E.
AU - Knapp, Gillian R.
AU - Gunn, James E.
AU - Rockosi, Constance M.
AU - Schlegel, David
AU - Vanden Berk, Daniel E.
AU - Hall, Pat
AU - Schneider, Donald P.
AU - Brunner, Robert J.
PY - 2006/6
Y1 - 2006/6
N2 - We present a study of variable faint optical sources discovered by comparing the Sloan Digital Sky Survey (SDSS) and the Palomar Observatory Sky Survey (POSS) catalogs. We use SDSS measurements to photometrically recalibrate several publicly available POSS catalogs (USNO-A2.0, USNO-B1.0, DPOSS [the Digitized Second Palomar Observatory Sky Survey], and GSC2.2 [the Guide Star Catalog 2.2]). A piecewise recalibration of the POSS data in 100 arcmin 2 patches (one SDSS field) generally results in an improvement of photometric accuracy (rms) by nearly a factor of 2, compared to the original data. In addition to the smaller core width of the error distribution, the tails of the distribution become much steeper after the recalibration. These improvements are mostly due to the very dense grid of calibration stars provided by SDSS, which rectifies the intrinsic inhomogeneities of Schmidt plates. We find that the POSS I magnitudes can be improved to ∼0.15 mag accuracy, and POSS II magnitudes to ∼0.10 mag accuracy. The smallest final errors are obtained with the GSC2.2 catalog, for which they approach 0.07 mag at the bright end. We use the recalibrated catalogs for the ∼3300 deg 2 of sky in the SDSS Data Release 2 to construct a catalog of ∼60,000 sources that are variable on timescales of 10-50 yr, and make it publicly available. Using this catalog, we find that at least 1% of faint optical sources appear variable at the >0.25 mag level, and that about 20% of the variable population are quasars, although they represent only 0.6% of all point sources in the adopted flux-limited sample (g < 19). A series of statistical tests based on the morphology of SDSS color-magnitude and color-color diagrams, as well as visual comparison of images and comparison with repeated SDSS observations, demonstrate the robustness of the selection methods: three out of four candidate variable sources are correctly recognized to vary. We also demonstrate that candidate RR Lyrae stars trace the same halo structures, such as the Sgr dwarf tidal stream, that were discovered using repeated SDSS observations. We utilize the POSS-SDSS selected candidates to constrain the halo structure in the parts of sky for which repeated SDSS observations do not exist. We quantify the distribution of variable sources in the SDSS color-color diagrams and the variability characteristics of quasars. The observed long-term quasar variability (structure function) is smaller than predicted by the extrapolation of the power law measured for short timescales using repeated SDSS imaging (0.35 vs. 0.60 mag for SDSS-POSS I and 0.24 vs. 0.35 mag for SDSS-POSS II, rms). This turnover in structure function suggests that the characteristic timescale for quasar variability is on the order of 1 yr in the rest frame.
AB - We present a study of variable faint optical sources discovered by comparing the Sloan Digital Sky Survey (SDSS) and the Palomar Observatory Sky Survey (POSS) catalogs. We use SDSS measurements to photometrically recalibrate several publicly available POSS catalogs (USNO-A2.0, USNO-B1.0, DPOSS [the Digitized Second Palomar Observatory Sky Survey], and GSC2.2 [the Guide Star Catalog 2.2]). A piecewise recalibration of the POSS data in 100 arcmin 2 patches (one SDSS field) generally results in an improvement of photometric accuracy (rms) by nearly a factor of 2, compared to the original data. In addition to the smaller core width of the error distribution, the tails of the distribution become much steeper after the recalibration. These improvements are mostly due to the very dense grid of calibration stars provided by SDSS, which rectifies the intrinsic inhomogeneities of Schmidt plates. We find that the POSS I magnitudes can be improved to ∼0.15 mag accuracy, and POSS II magnitudes to ∼0.10 mag accuracy. The smallest final errors are obtained with the GSC2.2 catalog, for which they approach 0.07 mag at the bright end. We use the recalibrated catalogs for the ∼3300 deg 2 of sky in the SDSS Data Release 2 to construct a catalog of ∼60,000 sources that are variable on timescales of 10-50 yr, and make it publicly available. Using this catalog, we find that at least 1% of faint optical sources appear variable at the >0.25 mag level, and that about 20% of the variable population are quasars, although they represent only 0.6% of all point sources in the adopted flux-limited sample (g < 19). A series of statistical tests based on the morphology of SDSS color-magnitude and color-color diagrams, as well as visual comparison of images and comparison with repeated SDSS observations, demonstrate the robustness of the selection methods: three out of four candidate variable sources are correctly recognized to vary. We also demonstrate that candidate RR Lyrae stars trace the same halo structures, such as the Sgr dwarf tidal stream, that were discovered using repeated SDSS observations. We utilize the POSS-SDSS selected candidates to constrain the halo structure in the parts of sky for which repeated SDSS observations do not exist. We quantify the distribution of variable sources in the SDSS color-color diagrams and the variability characteristics of quasars. The observed long-term quasar variability (structure function) is smaller than predicted by the extrapolation of the power law measured for short timescales using repeated SDSS imaging (0.35 vs. 0.60 mag for SDSS-POSS I and 0.24 vs. 0.35 mag for SDSS-POSS II, rms). This turnover in structure function suggests that the characteristic timescale for quasar variability is on the order of 1 yr in the rest frame.
UR - http://www.scopus.com/inward/record.url?scp=33746882139&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33746882139&partnerID=8YFLogxK
U2 - 10.1086/503672
DO - 10.1086/503672
M3 - Article
AN - SCOPUS:33746882139
SN - 0004-6256
VL - 131
SP - 2801
EP - 2825
JO - Astronomical Journal
JF - Astronomical Journal
IS - 6
ER -