Variable selection in linear mixed effects models

Yingying Fan, Runze Li

Research output: Contribution to journalArticlepeer-review

80 Scopus citations


This paper is concerned with the selection and estimation of fixed and random effects in linear mixed effects models.We propose a class of nonconcave penalized profile likelihood methods for selecting and estimating important fixed effects. To overcome the difficulty of unknown covariance matrix of random effects, we propose to use a proxy matrix in the penalized profile likelihood. We establish conditions on the choice of the proxy matrix and show that the proposed procedure enjoys the model selection consistency where the number of fixed effects is allowed to grow exponentially with the sample size.We further propose a group variable selection strategy to simultaneously select and estimate important random effects, where the unknown covariance matrix of random effects is replaced with a proxy matrix.We prove that, with the proxy matrix appropriately chosen, the proposed procedure can identify all true random effects with asymptotic probability one, where the dimension of random effects vector is allowed to increase exponentially with the sample size. Monte Carlo simulation studies are conducted to examine the finite-sample performance of the proposed procedures. We further illustrate the proposed procedures via a real data example.

Original languageEnglish (US)
Pages (from-to)2043-2068
Number of pages26
JournalAnnals of Statistics
Issue number4
StatePublished - Aug 2012

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Statistics, Probability and Uncertainty


Dive into the research topics of 'Variable selection in linear mixed effects models'. Together they form a unique fingerprint.

Cite this