TY - GEN
T1 - Variation-based transparency analysis of an internet-distributed hardware-in-the-loop simulation platform for vehicle powertrain systems
AU - Ersal, Tulga
AU - Brudnak, Mark
AU - Stein, Jeffrey L.
AU - Fathy, Hosam K.
PY - 2010
Y1 - 2010
N2 - Recent work by the authors and colleagues developed an Internet-distributed hardware-in-the-loop simulation (HILS) platform to integrate two geographically-dispersed HILS setups over the Internet, namely, the engine-in-the-loop simulation setup at the University of Michigan (UM) in Ann Arbor, MI, and the driver-in-the-loop ride motion simulator at the US Army Tank-Automotive Research, Development and Engineering Center (TARDEC) in Warren, MI. As the literature discusses in detail, distributing the HILS over the Internet introduces transparency issues due to the delay, jitter, and loss associated with the Internet. This paper first illustrates on a simple example that distributing the simulation can in and of itself be another important source of transparency degradation. Then, the paper presents a variation analysis to evaluate the effect of these two main sources of transparency degradation on the performance of the abovementioned setup. The paper concludes that transparency and how it is affected by distributing the simulation and by the delay, jitter, and loss associated with the Internet is dependent on the signal of interest. Specifically, it is shown that distributing the simulation has more effect on the transparency of the engine torque and throttle signals than the delay, jitter, and loss of the Internet between Ann Arbor and Warren, whereas it does not significantly affect the transparency of vehicle speed unless the Internet delay increases significantly.
AB - Recent work by the authors and colleagues developed an Internet-distributed hardware-in-the-loop simulation (HILS) platform to integrate two geographically-dispersed HILS setups over the Internet, namely, the engine-in-the-loop simulation setup at the University of Michigan (UM) in Ann Arbor, MI, and the driver-in-the-loop ride motion simulator at the US Army Tank-Automotive Research, Development and Engineering Center (TARDEC) in Warren, MI. As the literature discusses in detail, distributing the HILS over the Internet introduces transparency issues due to the delay, jitter, and loss associated with the Internet. This paper first illustrates on a simple example that distributing the simulation can in and of itself be another important source of transparency degradation. Then, the paper presents a variation analysis to evaluate the effect of these two main sources of transparency degradation on the performance of the abovementioned setup. The paper concludes that transparency and how it is affected by distributing the simulation and by the delay, jitter, and loss associated with the Internet is dependent on the signal of interest. Specifically, it is shown that distributing the simulation has more effect on the transparency of the engine torque and throttle signals than the delay, jitter, and loss of the Internet between Ann Arbor and Warren, whereas it does not significantly affect the transparency of vehicle speed unless the Internet delay increases significantly.
UR - http://www.scopus.com/inward/record.url?scp=77953764111&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77953764111&partnerID=8YFLogxK
U2 - 10.1115/DSCC2009-2711
DO - 10.1115/DSCC2009-2711
M3 - Conference contribution
AN - SCOPUS:77953764111
SN - 9780791848920
T3 - Proceedings of the ASME Dynamic Systems and Control Conference 2009, DSCC2009
SP - 1217
EP - 1224
BT - Proceedings of the ASME Dynamic Systems and Control Conference 2009, DSCC2009
PB - American Society of Mechanical Engineers (ASME)
T2 - 2009 ASME Dynamic Systems and Control Conference, DSCC2009
Y2 - 12 October 2009 through 14 October 2009
ER -