Vertical stiffness and lower limb inter-joint coordination in older versus younger runners

Thiago Ribeiro Teles Santos, Priscila Albuquerque Araújo, Liria Akie Okai-Nóbrega, Rodrigo de Sousa Gomide, Vanessa Lara Araújo, Fabricio Saucedo, Marcus Fraga Vieira, Sergio Teixeira Fonseca

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Older runners (OR) are increasing their participation in races. Aging may impact the adopted running pattern. Hence, the analysis of stiffness and the inter-joint lower limb coordination in the sagittal plane could contribute to investigating this impact. This study aimed to compare the vertical stiffness (Kvert) and the inter-joint lower limb coordination in the sagittal plane between younger runners (YR) and OR. This cross-sectional study recruited 15 YR males and 15 OR males. The pelvis and lower limb motions were assessed while running on a treadmill at self-selected (range OR: 1.94–3.75 m.s−1, YR: 2.08–4.17 m.s−1) and fixed speeds (3.33 m.s−1). Hip-ankle, knee-ankle, and hip-knee coupling angle (CA) and its variability (CAV) were extracted using the vector coding method. Mann-Whitney U tests compared Kvert between groups at each running speed. Watson's U2 tests compared the mean CA between groups in three intervals of the contact phase at each running speed. Statistical Parametric Mapping independent t-test compared the CAV curve between groups at each running speed. OR showed greater Kvert than YR at both speeds. Hip-ankle CA pattern differed between groups during the early stance at both speed conditions. OR showed in-phase, distal dominancy in hip-ankle CA, whereas YR showed anti-phase, proximal dominancy. Knee-ankle CA was distinct only at self-selected speed, in which OR showed in-phase, proximal dominancy, while YR exhibited anti-phase, proximal dominancy. CAV did not differ between groups. The findings showed that OR adopted a stiffer pattern characterized by distinct inter-joint lower limb CA, at early stance, during self-selected and fixed speeds.

Original languageEnglish (US)
Article number111705
JournalJournal of Biomechanics
Volume157
DOIs
StatePublished - Aug 2023

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Biomedical Engineering
  • Orthopedics and Sports Medicine
  • Rehabilitation

Fingerprint

Dive into the research topics of 'Vertical stiffness and lower limb inter-joint coordination in older versus younger runners'. Together they form a unique fingerprint.

Cite this