Vesicle Impact Electrochemical Cytometry to Determine Carbon Nanotube-Induced Fusion of Intracellular Vesicles

Amir Hatamie, Lin Ren, Xinwei Zhang, Andrew G. Ewing

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Carbon nanotube (CNT)-modified electrodes are used to obtain new measurements of vesicle content via amperometry. We have investigated the interaction between CNTs and isolated adrenal chromaffin vesicles (as a model) by vesicle impact electrochemical cytometry. Our data show that the presence of CNTs not only significantly increased the vesicular catecholamine number from 2,250,000 ± 112,766 molecules on a bare electrode to 3,880,000 ± 686,573 molecules on CNT/carbon fiber electrodes but also caused an enhancement in the maximum intensity of the current, which implies the existence of strong interactions between vesicle biolayers and CNTs and an altered electroporation process. We suggest that CNTs might perturb and destabilize the membrane structure of intracellular vesicles and cause the aggregation or fusion of vesicles into new vesicles with larger size and higher content. Our findings are consistent with previous computational and experimental results and support the hypothesis that CNTs as a mediator can rearrange the phospholipid bilayer membrane and trigger homotypic fusion of intracellular vesicles.

Original languageEnglish (US)
Pages (from-to)13161-13168
Number of pages8
JournalAnalytical Chemistry
Volume93
Issue number39
DOIs
StatePublished - Oct 5 2021

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry

Fingerprint

Dive into the research topics of 'Vesicle Impact Electrochemical Cytometry to Determine Carbon Nanotube-Induced Fusion of Intracellular Vesicles'. Together they form a unique fingerprint.

Cite this