Viability, task switching, and fall avoidance of the simplest dynamic walker

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Walking humans display great versatility when achieving task goals, like avoiding obstacles or walking alongside others, but the relevance of this to fall avoidance remains unknown. We recently demonstrated a functional connection between the motor regulation needed to achieve task goals (e.g., maintaining walking speed) and a simple walker’s ability to reject large disturbances. Here, for the same model, we identify the viability kernel—the largest state-space region where the walker can step forever via at least one sequence of push-off inputs per state. We further find that only a few basins of attraction of the speed-regulated walker’s steady-state gaits can fully cover the viability kernel. This highlights a potentially important role of task-level motor regulation in fall avoidance. Therefore, we posit an adaptive hierarchical control/regulation strategy that switches between different task-level regulators to avoid falls. Our task switching controller only requires a target value of the regulated observable—a “task switch”—at every walking step, each chosen from a small, predetermined collection. Because humans have typically already learned to perform such goal-directed tasks during nominal walking conditions, this suggests that the “information cost” of biologically implementing such controllers for the nervous system, including cognitive demands in humans, could be quite low.

Original languageEnglish (US)
Article number8993
JournalScientific reports
Volume12
Issue number1
DOIs
StatePublished - Dec 2022

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Viability, task switching, and fall avoidance of the simplest dynamic walker'. Together they form a unique fingerprint.

Cite this