Vibration performance of composite steel-bar truss slab with steel girder

Jiepeng Liu, Liang Cao, Y. Frank Chen

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


In this study, on-site testing was carried out to investigate the vibration performance of a composite steel-bar truss slab with steel girder system. Ambient vibration was performed to capture the primary vibration parameters (natural frequencies, damping ratios, and mode shapes). The composite floor possesses low frequency (< 10 Hz) and damping (< 2%). Based on experimental, theoretical, and numerical analyses on natural frequencies and mode shapes, the boundary condition of SCSC (i.e., two opposite edges simply-supported and the other two edges clamped) is deemed more reasonable for the composite floor. Walking excitations by one person (single excitation), two persons (dual excitation), and three persons (triple excitation) were considered to evaluate the vibration serviceability of the composite floor. The measured acceleration results show a satisfactory vibration perceptibility. For design convenience and safety, a crest factor βrp describing the ratio of peak acceleration to root-mean-square acceleration induced from the walking excitations is proposed. The comparisons of the modal parameters determined by ambient vibration and walking tests reveal the interaction effect between the human excitation and the composite floor.

Original languageEnglish (US)
Pages (from-to)577-589
Number of pages13
JournalSteel and Composite Structures
Issue number6
StatePublished - 2019

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Building and Construction
  • Metals and Alloys


Dive into the research topics of 'Vibration performance of composite steel-bar truss slab with steel girder'. Together they form a unique fingerprint.

Cite this