VICTOR: An Implicit Approach to Mitigate Misinformation via Continuous Verification Reading

Kuan Chieh Lo, Shih Chieh Dai, Aiping Xiong, Jing Jiang, Lun Wei Ku

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

We design and evaluate VICTOR, an easy-to-apply module on top of a recommender system to mitigate misinformation. VICTOR takes an elegant, implicit approach to deliver fake-news verifications, such that readers of fake news can continuously access more verified news articles about fake-news events without explicit correction. We frame fake-news intervention within VICTOR as a graph-based question-answering (QA) task, with Q as a fake-news article and A as the corresponding verified articles. Specifically, VICTOR adopts reinforcement learning: it first considers fake-news readers' preferences supported by underlying news recommender systems and then directs their reading sequence towards the verified news articles. To verify the performance of VICTOR, we collect and organize VERI, a new dataset consisting of real-news articles, user browsing logs, and fake-real news pairs for a large number of misinformation events. We evaluate zero-shot and few-shot VICTOR on VERI to simulate the never-exposed-ever and seen-before conditions of users while reading a piece of fake news. Results demonstrate that compared to baselines, VICTOR proactively delivers 6% more verified articles with a diversity increase of 7.5% to over 68% of at-risk users who have been exposed to fake news. Moreover, we conduct a field user study in which 165 participants evaluated fake news articles. Participants in the VICTOR condition show better exposure rates, proposal rates, and click rates on verified news articles than those in the other two conditions. Altogether, our work demonstrates the potentials of VICTOR, i.e., combat fake news by delivering verified information implicitly.

Original languageEnglish (US)
Title of host publicationWWW 2022 - Proceedings of the ACM Web Conference 2022
PublisherAssociation for Computing Machinery, Inc
Pages3511-3519
Number of pages9
ISBN (Electronic)9781450390965
DOIs
StatePublished - Apr 25 2022
Event31st ACM World Wide Web Conference, WWW 2022 - Virtual, Online, France
Duration: Apr 25 2022Apr 29 2022

Publication series

NameWWW 2022 - Proceedings of the ACM Web Conference 2022

Conference

Conference31st ACM World Wide Web Conference, WWW 2022
Country/TerritoryFrance
CityVirtual, Online
Period4/25/224/29/22

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Software

Fingerprint

Dive into the research topics of 'VICTOR: An Implicit Approach to Mitigate Misinformation via Continuous Verification Reading'. Together they form a unique fingerprint.

Cite this