TY - GEN
T1 - Virtual environments for structural health monitoring
AU - Napolitano, Rebecca
AU - Blyth, Anna
AU - Glisic, Branko
N1 - Funding Information:
The authors would like to acknowledge the members of the SHM lab at Princeton for their assistance with this work. Additionally, we would like to acknowledge the School of Engineering and Applied Sciences at Princeton. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1656466. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
PY - 2017
Y1 - 2017
N2 - While thorough documentation has always been a crucial feature of life cycle monitoring and assessment, different forms of documentation have not always been well integrated. Thorough documentation can include 2D images, 3D models, architectural drawings, reports from past interventions, current monitoring data, among other elements. In life-cycle monitoring, it is important that all of these types of documentation are well integrated and organized. The work presented here reflects a methodology and digital workflow for organizing and integrating existing documentation and data about a structure into a virtual reality environment. Through presenting data about a structure in an intuitive, organized, and interactive way, a virtual environment will foster communication among different groups working on a project, and greatly help the engineers to quickly and comprehensively assess the condition of the structure. The virtual environment proposed here uses 360 degree spherical imaging (Ricoh Theta) and virtual environment software (Kolor Panotour Pro) to aid a user in virtually experiencing a structure accompanied by its associated data. This project was implemented on Streicker Bridge, a 350 foot pedestrian bridge, in Princeton, NJ, USA. Since construction began in 2009, this bridge has been monitored using fiber-optic strain sensors. This data is incorporated into the virtual environment to highlight the possibilities of this method for life-cycle management. The lessons learned will be recommendations for how virtual environments can be used to enhance current practices and visualization methods for long-term monitoring and assessment.
AB - While thorough documentation has always been a crucial feature of life cycle monitoring and assessment, different forms of documentation have not always been well integrated. Thorough documentation can include 2D images, 3D models, architectural drawings, reports from past interventions, current monitoring data, among other elements. In life-cycle monitoring, it is important that all of these types of documentation are well integrated and organized. The work presented here reflects a methodology and digital workflow for organizing and integrating existing documentation and data about a structure into a virtual reality environment. Through presenting data about a structure in an intuitive, organized, and interactive way, a virtual environment will foster communication among different groups working on a project, and greatly help the engineers to quickly and comprehensively assess the condition of the structure. The virtual environment proposed here uses 360 degree spherical imaging (Ricoh Theta) and virtual environment software (Kolor Panotour Pro) to aid a user in virtually experiencing a structure accompanied by its associated data. This project was implemented on Streicker Bridge, a 350 foot pedestrian bridge, in Princeton, NJ, USA. Since construction began in 2009, this bridge has been monitored using fiber-optic strain sensors. This data is incorporated into the virtual environment to highlight the possibilities of this method for life-cycle management. The lessons learned will be recommendations for how virtual environments can be used to enhance current practices and visualization methods for long-term monitoring and assessment.
UR - http://www.scopus.com/inward/record.url?scp=85032445865&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85032445865&partnerID=8YFLogxK
U2 - 10.12783/shm2017/14031
DO - 10.12783/shm2017/14031
M3 - Conference contribution
AN - SCOPUS:85032445865
T3 - Structural Health Monitoring 2017: Real-Time Material State Awareness and Data-Driven Safety Assurance - Proceedings of the 11th International Workshop on Structural Health Monitoring, IWSHM 2017
SP - 1549
EP - 1555
BT - Structural Health Monitoring 2017
A2 - Chang, Fu-Kuo
A2 - Kopsaftopoulos, Fotis
PB - DEStech Publications
T2 - 11th International Workshop on Structural Health Monitoring 2017: Real-Time Material State Awareness and Data-Driven Safety Assurance, IWSHM 2017
Y2 - 12 September 2017 through 14 September 2017
ER -