Virtual time-to-collision and human postural control

Semyon M. Slobounov, Elena S. Slobounova, Karl M. Newell

Research output: Contribution to journalArticlepeer-review

111 Scopus citations

Abstract

This article is a report on 3 experiments designed so that the role of virtual time-to-collision (VTC), which specifies the spatiotemporal proximity of the center of pressure to the postural stability boundary in the regulation of posture in upright stances, could be examined. Virtual time- to-collision was estimated for normal upright stance with different bases of support, and for postural oscillations in which the speed of movement and instructional constraints on the coordination mode used were manipulated. The results showed that virtual time-to-collision was predictably reduced as (a) the base of support was reduced, (b) the speed of the postural oscillation was increased, and (c) the number of biomechanical degrees of freedom regulated in the coordination mode increased. Over a range of task conditions, the coefficients of variation of the VTC time-series were significantly lower than the coefficients of variation for the velocity and acceleration time-series of the center of pressure. The absolute values of VTC increased with the increment of the ground reaction forces a performer generated to avoid falling while approaching the stability boundary. These findings are consistent with the proposition that VTC may serve as an organizing informational control parameter for posture.

Original languageEnglish (US)
Pages (from-to)263-281
Number of pages19
JournalJournal of motor behavior
Volume29
Issue number3
DOIs
StatePublished - Sep 1997

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Orthopedics and Sports Medicine
  • Experimental and Cognitive Psychology
  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'Virtual time-to-collision and human postural control'. Together they form a unique fingerprint.

Cite this