Abstract
A constant-Q wave equation involving fractional Laplacians was recently introduced for viscoacoustic modeling and imaging. This fractional wave equation has a convenient mixed-domain space-wavenumber formulation, which involves the fractional-Laplacian operators with a spatially varying power. We have applied the low-rank approximation to the mixed-domain symbol, which enables a spacevariable attenuation specified by the variable fractional power of the Laplacians. Using the proposed approximation scheme, we formulated the framework of the Q-compensated reverse time migration (Q-RTM) for attenuation compensation. Numerical examples using synthetic data demonstrated the improved accuracy of using low-rank wave extrapolation with a constant-Q fractional-Laplacian wave equation for seismic modeling and migration in attenuating media. Low-rank Q-RTM applied to viscoacoustic data is capable of producing images comparable in quality with those produced by conventional RTM from acoustic data.
Original language | English (US) |
---|---|
Pages (from-to) | A103-A108 |
Journal | Geophysics |
Volume | 80 |
Issue number | 5 |
DOIs | |
State | Published - Jul 20 2015 |
All Science Journal Classification (ASJC) codes
- Geochemistry and Petrology