Visual story post-editing

Ting Yao Hsu, Chieh Yang Huang, Yen Chia Hsu, Ting Hao Kenneth Huang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations

Abstract

We introduce the first dataset for human edits of machine-generated visual stories and explore how these collected edits may be used for the visual story post-editing task. The dataset, VIST-Edit1, includes 14,905 human-edited versions of 2,981 machine-generated visual stories. The stories were generated by two state-of-the-art visual storytelling models, each aligned to 5 human-edited versions. We establish baselines for the task, showing how a relatively small set of human edits can be leveraged to boost the performance of large visual storytelling models. We also discuss the weak correlation between automatic evaluation scores and human ratings, motivating the need for new automatic metrics.

Original languageEnglish (US)
Title of host publicationACL 2019 - 57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages6581-6586
Number of pages6
ISBN (Electronic)9781950737482
StatePublished - 2020
Event57th Annual Meeting of the Association for Computational Linguistics, ACL 2019 - Florence, Italy
Duration: Jul 28 2019Aug 2 2019

Publication series

NameACL 2019 - 57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference

Conference

Conference57th Annual Meeting of the Association for Computational Linguistics, ACL 2019
Country/TerritoryItaly
CityFlorence
Period7/28/198/2/19

All Science Journal Classification (ASJC) codes

  • Language and Linguistics
  • General Computer Science
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'Visual story post-editing'. Together they form a unique fingerprint.

Cite this