TY - GEN
T1 - Visualization of confined jet impingement with boiling using time-resolved stereo-PIV
AU - Rau, Matthew J.
AU - Guo, Tianqi
AU - Vlachos, Pavlos P.
AU - Garimella, Suresh V.
N1 - Publisher Copyright:
© Copyright 2015 by ASME.
PY - 2015
Y1 - 2015
N2 - Two-phase liquid-vapor flow field measurements of confined jet impingement with boiling are performed using time-resolved stereo particle image velocimetry (stereo-PIV). A single circular jet of water, impinges normally from a 3.75 mm-diameter orifice onto a submerged circular heat source at an orifice-to-target spacing of 4 jet diameters. The impinging jet outflow including the vapor generated at the heat source are confined between the jet orifice plate and the bottom test section wall. Fluorescent seeding particles (10 μm in diameter) and time-resolved PIV measurements (taken at a sampling rate of 750 Hz) allow for imaging of the instantaneous interactions between the liquid and vapor structures. Liquid-phase velocity vectors within the two-phase flow field (with high vapor fractions) are presented as a function of heat flux at jet Reynolds numbers of 5,000 and 15,000 and contrasted with single-phase flow. The time-resolved measurements are used to highlight the influence of the vapor phase on the liquid flow field. It is found that bubble formation effectively blocks the developing wall-jet flow on the heated surface. The resulting liquid flow field in the confinement gap is dominated by vapor motion rather than by the entrainment from the developing wall jet.
AB - Two-phase liquid-vapor flow field measurements of confined jet impingement with boiling are performed using time-resolved stereo particle image velocimetry (stereo-PIV). A single circular jet of water, impinges normally from a 3.75 mm-diameter orifice onto a submerged circular heat source at an orifice-to-target spacing of 4 jet diameters. The impinging jet outflow including the vapor generated at the heat source are confined between the jet orifice plate and the bottom test section wall. Fluorescent seeding particles (10 μm in diameter) and time-resolved PIV measurements (taken at a sampling rate of 750 Hz) allow for imaging of the instantaneous interactions between the liquid and vapor structures. Liquid-phase velocity vectors within the two-phase flow field (with high vapor fractions) are presented as a function of heat flux at jet Reynolds numbers of 5,000 and 15,000 and contrasted with single-phase flow. The time-resolved measurements are used to highlight the influence of the vapor phase on the liquid flow field. It is found that bubble formation effectively blocks the developing wall-jet flow on the heated surface. The resulting liquid flow field in the confinement gap is dominated by vapor motion rather than by the entrainment from the developing wall jet.
UR - http://www.scopus.com/inward/record.url?scp=84953897330&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84953897330&partnerID=8YFLogxK
U2 - 10.1115/IPACK2015-48184
DO - 10.1115/IPACK2015-48184
M3 - Conference contribution
AN - SCOPUS:84953897330
T3 - ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, InterPACK 2015, collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
BT - Advanced Electronics and Photonics, Packaging Materials and Processing; Advanced Electronics and Photonics
PB - American Society of Mechanical Engineers
T2 - ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, InterPACK 2015, collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
Y2 - 6 July 2015 through 9 July 2015
ER -