Visualizing computational simulation results using virtual reality technology

Nilay Sezer-Uzol, Lyle N. Long, Anirudh Modi, Paul E. Plassmann

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations


The visualization of computational simulations of complex physical problems using virtual reality technology is demonstrated in this study. A general-purpose computational steering system (POSSE) which can be coupled to any C/C++ simulation code, has been developed and tested with a 3-D parallel Navier-Stokes flow solver (PUMA2). In addition, the visualizations can be displayed using virtual reality facilities (such as CAVEs and RAVEs) to better understand the 3-D nature of the flowfields. The simulations can be run on parallel computers such as Beowulf clusters, while the visualization is performed on other computers, through a client-server approach. A key advantage of our system is its scalability. Visualization primitives are generated on the parallel computer. This is essential for large-scale simulations, since it is often not possible to post-process the entire flowfield on a single computer due to memory and speed constraints. Example applications of time-dependent and three-dimensional computational flow simulations performed at Penn-State are presented to show the usefulness of POSSE and virtual reality systems. The examples include CFD predictions for unsteady simulations of a helicopter rotor, unsteady ship airwake simulations, helicopter tail fan-in-fin flow simulations and simulations of time-accurate flow and noise due to a landing gear.

Original languageEnglish (US)
Title of host publicationProceedings of the 4th ASME/JSME Joint Fluids Engineering Conference
Subtitle of host publicationVolume 1, Part C, Forums
EditorsA. Ogut, Y. Tsuji, M. Kawahashi
PublisherAmerican Society of Mechanical Engineers
Number of pages8
ISBN (Print)0791836967, 9780791836965
StatePublished - 2003
Event4th ASME/JSME Joint Fluids Engineering Conference - Honolulu, HI, United States
Duration: Jul 6 2003Jul 10 2003

Publication series

NameProceedings of the ASME/JSME Joint Fluids Engineering Conference
Volume1 C


Other4th ASME/JSME Joint Fluids Engineering Conference
Country/TerritoryUnited States
CityHonolulu, HI

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Fluid Flow and Transfer Processes


Dive into the research topics of 'Visualizing computational simulation results using virtual reality technology'. Together they form a unique fingerprint.

Cite this