TY - JOUR
T1 - Visuomotor mental rotation
T2 - Reaction time is determined by the complexity of the sensorimotor transformations mediating the response
AU - Neely, Kristina A.
AU - Heath, Matthew
N1 - Funding Information:
A Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (MH) and a Major Academic Fund from the University of Western Ontario (MH) supported this research.
PY - 2010
Y1 - 2010
N2 - In the visuomotor mental rotation (VMR) task, participants point to a location that deviates from a visual target by a predetermined angle. A seminal investigation of the VMR task reported a linear increase in reaction time (RT) as a function of increasing angle, for 5°, 10°, 15°, 35°, 70°, 105°, and 140° (Georgopoulos and Massey, 1987). This finding led to the development of the mental rotation model (MRM) and the assertion that response preparation is mediated via the imagined rotation of a movement vector. To determine if the MRM can be extrapolated to perceptually familiar angles (e.g.; 90° and 180°) within a range of equally spaced angles, we evaluated two independent sets of angles: 5°, 10°, 15°, 35°, 70°, 105°, and 140° (experiment one) and 30°, 60°, 90°, 120°, 150°, 180°, and 210° (experiment two). Consistent with the MRM, experiment one revealed a linear increase in RT as a function of increasing angle; however, a non-linear relation was revealed for experiment two. RTs were fastest for 180°, followed by 30°, 90°, 60°, 150°, 210°, and 120°. Such results demonstrate that response preparation was not uniquely mediated via a mental rotation process. Instead, the present work provides evidence of a temporally demanding and cognitively mediated response substitution process, wherein the computational demands of response preparation are determined by the complexity of the sensorimotor transformations mediating the response.
AB - In the visuomotor mental rotation (VMR) task, participants point to a location that deviates from a visual target by a predetermined angle. A seminal investigation of the VMR task reported a linear increase in reaction time (RT) as a function of increasing angle, for 5°, 10°, 15°, 35°, 70°, 105°, and 140° (Georgopoulos and Massey, 1987). This finding led to the development of the mental rotation model (MRM) and the assertion that response preparation is mediated via the imagined rotation of a movement vector. To determine if the MRM can be extrapolated to perceptually familiar angles (e.g.; 90° and 180°) within a range of equally spaced angles, we evaluated two independent sets of angles: 5°, 10°, 15°, 35°, 70°, 105°, and 140° (experiment one) and 30°, 60°, 90°, 120°, 150°, 180°, and 210° (experiment two). Consistent with the MRM, experiment one revealed a linear increase in RT as a function of increasing angle; however, a non-linear relation was revealed for experiment two. RTs were fastest for 180°, followed by 30°, 90°, 60°, 150°, 210°, and 120°. Such results demonstrate that response preparation was not uniquely mediated via a mental rotation process. Instead, the present work provides evidence of a temporally demanding and cognitively mediated response substitution process, wherein the computational demands of response preparation are determined by the complexity of the sensorimotor transformations mediating the response.
UR - http://www.scopus.com/inward/record.url?scp=79251617148&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79251617148&partnerID=8YFLogxK
U2 - 10.1016/j.brainres.2010.09.096
DO - 10.1016/j.brainres.2010.09.096
M3 - Article
C2 - 20920488
AN - SCOPUS:79251617148
SN - 0006-8993
VL - 1366
SP - 129
EP - 140
JO - Brain research
JF - Brain research
ER -