TY - JOUR
T1 - Vitamin D heritability and effect of pregnancy status in Vervet monkeys (Chlorocebus aethiops sabaeus) under conditions of modest and high dietary supplementation
AU - Chittoor, Geetha
AU - Pajewski, Nicholas M.
AU - Voruganti, V. Saroja
AU - Comuzzie, Anthony G.
AU - Clarkson, Thomas B.
AU - Nudy, Matthew
AU - Schnatz, Peter F.
AU - Kaplan, Jay R.
AU - Jorgensen, Matthew J.
N1 - Publisher Copyright:
© 2016 Wiley Periodicals, Inc.
PY - 2016/4/1
Y1 - 2016/4/1
N2 - Objectives The two objectives of the current study were to: 1) investigate the genetic contributions to variations in serum vitamin D concentrations under two dietary conditions (a standard monkey biscuit diet vs. a diet designed to model typical American consumption); and 2) explore the interaction of vitamin D with pregnancy status using a cohort of pedigreed female vervet/African green monkeys. Methods This study includes 185 female (≥3.5 years) vervet/African green monkeys (Chlorocebus aethiops sabaeus) from a multi-generational, pedigreed breeding colony. The 25(OH)D3 concentrations were first measured seven to eight weeks after consuming a "typical American" diet (TAD), deriving 37, 18, and 45% of calories from fat, protein sources, and carbohydrates, and supplemented with vitamin D to a human equivalent of 1,000 IU/day. Vitamin D concentrations were assessed again when animals were switched to a low-fat, standard biscuit diet (LabDiet 5038) for 8 months, which provided a human equivalent of approximately 4,000 IU/day of vitamin D. All statistical analyses were implemented in SOLAR. Results Pregnancy was associated with reduced 25(OH)D3 concentrations. Heritability analyses indicated a significant genetic contribution to 25(OH)D3 concentrations in the same monkeys consuming the biscuit diet (h2=0.66, P=0.0004) and TAD (h2=0.67, P=0.0078) diets, with higher 25(OH)D3 concentrations in animals consuming the biscuit diet. Additionally, there was a significant genotype-by-pregnancy status interaction on 25(OH)D3 concentrations (P<0.05) only among animals consuming the TAD diet. Discussion These results support the existence of a genetic contribution to differences in serum 25(OH)D3 concentrations by pregnancy status and emphasize the role of diet (including vitamin D supplementation) in modifying genetic signals as well as vitamin D concentrations.
AB - Objectives The two objectives of the current study were to: 1) investigate the genetic contributions to variations in serum vitamin D concentrations under two dietary conditions (a standard monkey biscuit diet vs. a diet designed to model typical American consumption); and 2) explore the interaction of vitamin D with pregnancy status using a cohort of pedigreed female vervet/African green monkeys. Methods This study includes 185 female (≥3.5 years) vervet/African green monkeys (Chlorocebus aethiops sabaeus) from a multi-generational, pedigreed breeding colony. The 25(OH)D3 concentrations were first measured seven to eight weeks after consuming a "typical American" diet (TAD), deriving 37, 18, and 45% of calories from fat, protein sources, and carbohydrates, and supplemented with vitamin D to a human equivalent of 1,000 IU/day. Vitamin D concentrations were assessed again when animals were switched to a low-fat, standard biscuit diet (LabDiet 5038) for 8 months, which provided a human equivalent of approximately 4,000 IU/day of vitamin D. All statistical analyses were implemented in SOLAR. Results Pregnancy was associated with reduced 25(OH)D3 concentrations. Heritability analyses indicated a significant genetic contribution to 25(OH)D3 concentrations in the same monkeys consuming the biscuit diet (h2=0.66, P=0.0004) and TAD (h2=0.67, P=0.0078) diets, with higher 25(OH)D3 concentrations in animals consuming the biscuit diet. Additionally, there was a significant genotype-by-pregnancy status interaction on 25(OH)D3 concentrations (P<0.05) only among animals consuming the TAD diet. Discussion These results support the existence of a genetic contribution to differences in serum 25(OH)D3 concentrations by pregnancy status and emphasize the role of diet (including vitamin D supplementation) in modifying genetic signals as well as vitamin D concentrations.
UR - http://www.scopus.com/inward/record.url?scp=84960264815&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84960264815&partnerID=8YFLogxK
U2 - 10.1002/ajpa.22923
DO - 10.1002/ajpa.22923
M3 - Article
C2 - 26708407
AN - SCOPUS:84960264815
SN - 0002-9483
VL - 159
SP - 639
EP - 645
JO - American Journal of Physical Anthropology
JF - American Journal of Physical Anthropology
IS - 4
ER -