TY - JOUR
T1 - Voltage-controlled cryogenic Boolean logic gates based on ferroelectric SQUID and heater cryotron
AU - Alam, Shamiul
AU - Hossain, Md Shafayat
AU - Ni, Kai
AU - Narayanan, Vijaykrishnan
AU - Aziz, Ahmedullah
N1 - Publisher Copyright:
© 2024 Author(s).
PY - 2024/1/7
Y1 - 2024/1/7
N2 - The recent progress in quantum computing and space exploration led to a surge in interest in cryogenic electronics. Superconducting devices such as Josephson junction, Josephson field effect transistor, cryotron, and superconducting quantum interference device (SQUID) are traditionally used to build cryogenic logic gates. However, due to the superconducting nature, gate-voltage-based control of these devices is extremely difficult. Even more challenging is to cascade the logic gates because most of these devices require current bias for their operation. Therefore, these devices are not as convenient as the semiconducting transistors to design logic gates. Here, to overcome these challenges, we propose a ferroelectric SQUID (FeSQUID) based voltage-controlled logic gates. FeSQUID exhibits two different critical current levels for two different voltage-switchable polarization states of the ferroelectric. We utilize the polarization-dependent (hence, voltage-controllable) superconducting to resistive switching of FeSQUID to design Boolean logic gates such as Copy, NOT, AND, and OR gates. The operations of these gates are verified using a Verilog-A-based compact model of FeSQUID. Finally, to demonstrate the fanning out capability of FeSQUID-based logic family, we simulate a two-input XOR gate using FeSQUID-based NOT, AND, and OR gates. Together with the ongoing progress on FeSQUID-based non-volatile memory, our designed FeSQUID-based logic family will enable all FeSQUID-based cryogenic computer, ensuring minimum mismatch between logic and memory blocks in terms of speed, power consumption, and fabrication process.
AB - The recent progress in quantum computing and space exploration led to a surge in interest in cryogenic electronics. Superconducting devices such as Josephson junction, Josephson field effect transistor, cryotron, and superconducting quantum interference device (SQUID) are traditionally used to build cryogenic logic gates. However, due to the superconducting nature, gate-voltage-based control of these devices is extremely difficult. Even more challenging is to cascade the logic gates because most of these devices require current bias for their operation. Therefore, these devices are not as convenient as the semiconducting transistors to design logic gates. Here, to overcome these challenges, we propose a ferroelectric SQUID (FeSQUID) based voltage-controlled logic gates. FeSQUID exhibits two different critical current levels for two different voltage-switchable polarization states of the ferroelectric. We utilize the polarization-dependent (hence, voltage-controllable) superconducting to resistive switching of FeSQUID to design Boolean logic gates such as Copy, NOT, AND, and OR gates. The operations of these gates are verified using a Verilog-A-based compact model of FeSQUID. Finally, to demonstrate the fanning out capability of FeSQUID-based logic family, we simulate a two-input XOR gate using FeSQUID-based NOT, AND, and OR gates. Together with the ongoing progress on FeSQUID-based non-volatile memory, our designed FeSQUID-based logic family will enable all FeSQUID-based cryogenic computer, ensuring minimum mismatch between logic and memory blocks in terms of speed, power consumption, and fabrication process.
UR - http://www.scopus.com/inward/record.url?scp=85181771726&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85181771726&partnerID=8YFLogxK
U2 - 10.1063/5.0172531
DO - 10.1063/5.0172531
M3 - Article
AN - SCOPUS:85181771726
SN - 0021-8979
VL - 135
JO - Journal of Applied Physics
JF - Journal of Applied Physics
IS - 1
M1 - 014903
ER -