TY - JOUR
T1 - Volumetric interpretation of protein adsorption
T2 - Mass and energy balance for albumin adsorption to particulate adsorbents with incrementally increasing hydrophilicity
AU - Noh, Hyeran
AU - Vogler, Erwin A.
PY - 2006/12
Y1 - 2006/12
N2 - The solution-depletion method of measuring human serum albumin (HSA) adsorption to surface-modified glass-particle adsorbents with incrementally increasing hydrophilicity is implemented using SDS gel electrophoresis as a separation and quantification tool. It is shown that adsorbent capacity for albumin measured in interfacial-concentration units (mg/mL) decreases monotonically with increasing surface energy (water wettability) to detection limits near an adsorbent-particle water adhesion tension τ0 = 30 dyne / cm (nominal water contact angle θ = 6 5{ring operator}) and that albumin does not adsorb to (concentrate within the surface region of) more hydrophilic adsorbents. These adsorbed-mass measurements corroborate predictions based on interfacial energetics and are consistent with AFM measurement of protein-surface adhesion. Interpretive mass-balance equations are derived from a model premised on the idea that protein reversibly partitions from bulk solution into a three-dimensional (3D) interphase volume separating the physical adsorbent surface from bulk solution. Theory is shown to both anticipate and accommodate experimental results for all test adsorbents, suggesting that the underlying model is descriptive of the essential physical chemistry of albumin adsorption to surfaces spanning the full range of observable water wetting. In particular, application of theory to experimental data shows that the free-energy cost of dehydrating the surface region by protein displacement upon adsorption increases with increasing adsorbent hydrophilicity in a manner that controls ultimate capacity for protein. It is concluded that a simple, three-component free-energy rule adequately describes protein adsorption from aqueous solution, at least for materials bearing varying surface concentrations of anionic (not cationic) functional groups. Impact statement: This work yields detailed insights into the physical chemistry of protein adsorption by elucidating relationships among adsorbent surface energy, capacity to adsorb the protein human serum albumin, and the energy required to displace vicinal water from the interface.
AB - The solution-depletion method of measuring human serum albumin (HSA) adsorption to surface-modified glass-particle adsorbents with incrementally increasing hydrophilicity is implemented using SDS gel electrophoresis as a separation and quantification tool. It is shown that adsorbent capacity for albumin measured in interfacial-concentration units (mg/mL) decreases monotonically with increasing surface energy (water wettability) to detection limits near an adsorbent-particle water adhesion tension τ0 = 30 dyne / cm (nominal water contact angle θ = 6 5{ring operator}) and that albumin does not adsorb to (concentrate within the surface region of) more hydrophilic adsorbents. These adsorbed-mass measurements corroborate predictions based on interfacial energetics and are consistent with AFM measurement of protein-surface adhesion. Interpretive mass-balance equations are derived from a model premised on the idea that protein reversibly partitions from bulk solution into a three-dimensional (3D) interphase volume separating the physical adsorbent surface from bulk solution. Theory is shown to both anticipate and accommodate experimental results for all test adsorbents, suggesting that the underlying model is descriptive of the essential physical chemistry of albumin adsorption to surfaces spanning the full range of observable water wetting. In particular, application of theory to experimental data shows that the free-energy cost of dehydrating the surface region by protein displacement upon adsorption increases with increasing adsorbent hydrophilicity in a manner that controls ultimate capacity for protein. It is concluded that a simple, three-component free-energy rule adequately describes protein adsorption from aqueous solution, at least for materials bearing varying surface concentrations of anionic (not cationic) functional groups. Impact statement: This work yields detailed insights into the physical chemistry of protein adsorption by elucidating relationships among adsorbent surface energy, capacity to adsorb the protein human serum albumin, and the energy required to displace vicinal water from the interface.
UR - http://www.scopus.com/inward/record.url?scp=33747870203&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33747870203&partnerID=8YFLogxK
U2 - 10.1016/j.biomaterials.2006.08.005
DO - 10.1016/j.biomaterials.2006.08.005
M3 - Article
C2 - 16928398
AN - SCOPUS:33747870203
SN - 0142-9612
VL - 27
SP - 5801
EP - 5812
JO - Biomaterials
JF - Biomaterials
IS - 34
ER -