Watermarking-based Defense against Adversarial Attacks on Deep Neural Networks

Xiaoting Li, Lingwei Chen, Jinquan Zhang, James Larus, Dinghao Wu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

The vulnerability of deep neural networks to adversarial attacks has posed significant threats to real-world applications, especially security-critical ones. Given a well-trained model, slight modifications to the input samples can cause drastic changes in the predictions of the model. Many methods have been proposed to mitigate the issue. However, the majority of these defenses have proven to fail to resist all the adversarial attacks. This is mainly because the knowledge advantage of the attacker can help to either easily customize the information of the target model or create a surrogate model as a substitute to successfully construct the corresponding adversarial examples. In this paper, we propose a new defense mechanism that creates a knowledge gap between attackers and defenders by imposing a designed watermarking system into standard deep neural networks. The embedded watermark is data-independent and non-reproducible to an attacker, which improves randomization and security of the defense model without compromising performance on clean data, and thus yields knowledge disadvantage to prevent an attacker from crafting effective adversarial examples targeting the defensive model. We evaluate the performance of our watermarking defense using a wide range of watermarking algorithms against four state-of-the-art attacks on different datasets, and the experimental results validate its effectiveness.

Original languageEnglish (US)
Title of host publicationIJCNN 2021 - International Joint Conference on Neural Networks, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9780738133669
DOIs
StatePublished - Jul 18 2021
Event2021 International Joint Conference on Neural Networks, IJCNN 2021 - Virtual, Shenzhen, China
Duration: Jul 18 2021Jul 22 2021

Publication series

NameProceedings of the International Joint Conference on Neural Networks
Volume2021-July

Conference

Conference2021 International Joint Conference on Neural Networks, IJCNN 2021
Country/TerritoryChina
CityVirtual, Shenzhen
Period7/18/217/22/21

All Science Journal Classification (ASJC) codes

  • Software
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Watermarking-based Defense against Adversarial Attacks on Deep Neural Networks'. Together they form a unique fingerprint.

Cite this