Wave packet revivals and the energy eigenvalue spectrum of the quantum pendulum

M. A. Doncheski, Rick W. Robinett

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

The rigid pendulum, both as a classical and as a quantum problem, is an interesting system as it has the exactly soluble harmonic oscillator and the rigid rotor systems as limiting cases in the low- and high-energy limits, respectively. The energy variation of the classical periodicity (τ) is also dramatic, having the special limiting case of τ → ∞ at the 'top' of the classical motion (i.e., the separatrix.) We study the time-dependence of the quantum pendulum problem, focusing on the behavior of both the (approximate) classical periodicity and especially the quantum revival and superrevival times, as encoded in the energy eigenvalue spectrum of the system. We provide approximate expressions for the energy eigenvalues in both the small and large quantum number limits, up to fourth order in perturbation theory, comparing these to existing handbook expansions for the characteristic values of the related Mathieu equation, obtained by other methods. We then use these approximations to probe the classical periodicity, as well as to extract information on the quantum revival and superrevival times. We find that while both the classical and quantum periodicities increase monotonically as one approaches the 'top' in energy, from either above or below, the revival times decrease from their low- and high-energy values until very near the separatrix where they increase to a large, but finite value.

Original languageEnglish (US)
Pages (from-to)578-598
Number of pages21
JournalAnnals of Physics
Volume308
Issue number2
DOIs
StatePublished - Dec 2003

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Wave packet revivals and the energy eigenvalue spectrum of the quantum pendulum'. Together they form a unique fingerprint.

Cite this