Weak form implementation of the semi-analytical finite element (SAFE) method for a variety of elastodynamic waveguides

Christopher Hakoda, Clifford Lissenden, Joseph L. Rose

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

Dispersion curves are essential to any guided wave NDE project. The Semi-Analytical Finite Element (SAFE) method has significantly increased the ease by which these curves can be calculated. However, due to misconceptions regarding theory and fragmentation based on different finite-element software, the theory has stagnated, and adoption by researchers who are new to the field has been slow. This paper focuses on the relationship between the SAFE formulation and finite element theory, and the implementation of the SAFE method in a weak form for plates, pipes, layered waveguides/composites, curved waveguides, and arbitrary cross-sections is shown. The benefits of the weak form are briefly described, as is implementation in open-source and commercial finite element software.

Original languageEnglish (US)
Title of host publication44th Annual Review of Progress in Quantitative Nondestructive Evaluation, Volume 37
EditorsDale E. Chimenti, Leonard J. Bond
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735416444
DOIs
StatePublished - Apr 20 2018
Event44th Annual Review of Progress in Quantitative Nondestructive Evaluation, QNDE 2017 - Provo, United States
Duration: Jul 16 2017Jul 21 2017

Publication series

NameAIP Conference Proceedings
Volume1949
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Other

Other44th Annual Review of Progress in Quantitative Nondestructive Evaluation, QNDE 2017
Country/TerritoryUnited States
CityProvo
Period7/16/177/21/17

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Weak form implementation of the semi-analytical finite element (SAFE) method for a variety of elastodynamic waveguides'. Together they form a unique fingerprint.

Cite this