Abstract
Mass calibration uncertainty is the largest systematic effect for using clusters of galaxies to constrain cosmological parameters. We present weak lensing mass measurements from the Canada-France-Hawaii Telescope Stripe 82 Survey for galaxy clusters selected through their high signal-to-noise thermal Sunyaev-Zeldovich (tSZ) signal measured with the Atacama Cosmology Telescope (ACT). For a sample of 9 ACT clusters with a tSZ signal-to-noise greater than five the average weak lensing mass is (4.8±0.8) ×1014 Mo, consistent with the tSZ mass estimate of (4.70±1.0) ×1014 Mo which assumes a universal pressure profile for the cluster gas. Our results are consistent with previous weak-lensing measurements of tSZ-detected clusters from the Planck satellite. When comparing our results, we estimate the Eddington bias correction for the sample intersection of Planck and weak-lensing clusters which was previously excluded.
Original language | English (US) |
---|---|
Article number | 013 |
Journal | Journal of Cosmology and Astroparticle Physics |
Volume | 2016 |
Issue number | 8 |
DOIs | |
State | Published - Aug 8 2016 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics