Weight-perception-based novel control for cooperative lifting of objects with a power assist robot by two humans

S. M.Mizanoor Rahman, Ryojun Ikeura

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

The objective was to design and implement a weight-perception-based novel control strategy to improve performances when lifting objects with a power assist system by two humans cooperatively. We developed a 1-DOF power assist system for lifting objects. We hypothesized that weight perception due to inertia might be different from that due to gravity when lifting an object with power-assist because the perceived weight is different from the actual weight. The system was simulated and two humans cooperatively lifted objects with it. We critically analyzed weight perception, load forces and motion features. We found that the robot reduced the perceived weights of the cooperatively lifted objects to 25% of the actual weights and the applied load forces were 8 times larger than the actually required load forces. Excessive load forces resulted in excessive accelerations that jeopardized system performances. We then implemented a novel control scheme based on human features that reduced excessive load forces and accelerations and thus enhanced performances in terms of maneuverability, safety etc. The findings may be used to develop power assist robots for manipulating heavy objects in industries that may augment human's abilities and skills and may improve interactions between robots and humans.

Original languageEnglish (US)
Title of host publication2012 4th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2012
Pages228-233
Number of pages6
DOIs
StatePublished - 2012
Event2012 4th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2012 - Rome, Italy
Duration: Jun 24 2012Jun 27 2012

Publication series

NameProceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
ISSN (Print)2155-1774

Conference

Conference2012 4th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2012
Country/TerritoryItaly
CityRome
Period6/24/126/27/12

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Biomedical Engineering
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Weight-perception-based novel control for cooperative lifting of objects with a power assist robot by two humans'. Together they form a unique fingerprint.

Cite this