Whole genome alignment based one-step real-time RT-PCR for universal detection of avian orthoreoviruses of chicken, pheasant and turkey origins

Yi Tang, Huaguang Lu

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Newly emerging avian orthoreovirus (ARV) variants have been continuously detected in Pennsylvania poultry since 2011. In this paper, we report our recent diagnostic assay development of one-step real-time RT-PCR (rRT-PCR) for the rapid and universal detection of all ARVs or reference strains of chicken, pheasant and turkey origins and six σC genotypes of the newly emerging field ARV variants in Pennsylvania (PA) poultry. Primers and probes for the rRT-PCR were designed from the conserved region of the M1 genome segment 5' end based on the whole-genome alignment of various ARV strains, including six field variants or novel strains obtained in PA poultry. The detection limit of the newly developed rRT-PCR for ARV was as low as 10 copies/reaction of viral RNA, and 100.50-100.88 tissue culture infectious dose (TCID50)/100μL of viruses. This new rRT-PCR detected all six σC genotypes from the 66 ARV field variant strains and reference strains tested in this study. There were no cross-reactions with other avian viruses. Reproducibility of the assay was confirmed by intra- and inter-assay tests with variability from 0.12% to 2.19%. Sensitivity and specificity of this new rRT-PCR for ARV were achieved at 100% and 88%, respectively, in comparison with virus isolation as the "gold standard" in testing poultry tissue specimen.

Original languageEnglish (US)
Pages (from-to)120-126
Number of pages7
JournalInfection, Genetics and Evolution
Volume39
DOIs
StatePublished - Apr 1 2016

All Science Journal Classification (ASJC) codes

  • Microbiology
  • Ecology, Evolution, Behavior and Systematics
  • Molecular Biology
  • Genetics
  • Microbiology (medical)
  • Infectious Diseases

Fingerprint

Dive into the research topics of 'Whole genome alignment based one-step real-time RT-PCR for universal detection of avian orthoreoviruses of chicken, pheasant and turkey origins'. Together they form a unique fingerprint.

Cite this