Wind field estimation for autonomous dynamic soaring

Jack W. Langelaan, John Spletzer, Corey Montella, Joachim Grenestedt

Research output: Chapter in Book/Report/Conference proceedingConference contribution

46 Scopus citations

Abstract

A method for distributed parameter estimation of a previously unknown wind field is described. The application is dynamic soaring for small unmanned air vehicles, which severely constrains available computing while simultaneously requiring updates that are fast compared with a typical dynamic soaring cycle. A polynomial parameterization of the wind field is used, allowing implementation of a linear Kalman filter for parameter estimation. Results of Monte Carlo simulations show the effectiveness of the approach. In addition, in-flight measurements of wind speeds are compared with data obtained from video tracking of balloon launches to assess the accuracy of wind field estimates obtained using commercial autopilot modules.

Original languageEnglish (US)
Title of host publication2012 IEEE International Conference on Robotics and Automation, ICRA 2012
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages16-22
Number of pages7
ISBN (Print)9781467314039
DOIs
StatePublished - Jan 1 2012
Event 2012 IEEE International Conference on Robotics and Automation, ICRA 2012 - Saint Paul, MN, United States
Duration: May 14 2012May 18 2012

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Other

Other 2012 IEEE International Conference on Robotics and Automation, ICRA 2012
Country/TerritoryUnited States
CitySaint Paul, MN
Period5/14/125/18/12

All Science Journal Classification (ASJC) codes

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Wind field estimation for autonomous dynamic soaring'. Together they form a unique fingerprint.

Cite this