Wing rotation and lift in SUEX flapping wing mechanisms

Kiron Mateti, Rory A. Byrne-Dugan, Srinivas A. Tadigadapa, Christopher D. Rahn

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

This research presents detailed modeling and experimental testing of wing rotation and lift in the LionFly, a low cost and mass producible flapping wing mechanism fabricated monolithically from SUEX dry film and powered by piezoelectric bimorph actuators. A flexure hinge along the span of the wing allows the wing to rotate in addition to flapping. A dynamic model including aerodynamics is developed and validated using experimental testing with a laser vibrometer in air and vacuum, stroboscopic photography and high definition image processing, and lift measurement. The 112 mg LionFly produces 46° flap and 44° rotation peak to peak with 12° phase lag, which generates a maximum average lift of 71 μN in response to an applied sinusoidal voltage of 75 V AC and 75 V DC at 37 Hz. Simulated wing trajectories accurately predict measured wing trajectories at small voltage amplitudes, but slightly underpredict amplitude and lift at high voltage amplitudes. By reducing the length of the actuator, reducing the mechanism amplification and tuning the rotational hinge stiffness, a redesigned device is simulated to produce a lift to weight ratio of 1.5.

Original languageEnglish (US)
Article number014006
JournalSmart Materials and Structures
Volume22
Issue number1
DOIs
StatePublished - Jan 2013

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Civil and Structural Engineering
  • Atomic and Molecular Physics, and Optics
  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Wing rotation and lift in SUEX flapping wing mechanisms'. Together they form a unique fingerprint.

Cite this