TY - JOUR
T1 - X-ray observations of parsec-scale tails behind two middle-aged pulsars
AU - Kargaltsev, O.
AU - Misanovic, Z.
AU - Pavlov, G. G.
AU - Wong, J. A.
AU - Garmire, G. P.
N1 - Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2008/9/1
Y1 - 2008/9/1
N2 - Chandra and XMM-Newton resolved extremely long tails behind two middle-aged pulsars, J1509-5850 and J1740+1000. The tail of PSR J1509-5850 is discernible up to 5.6′ from the pulsar, which corresponds to the projected length l⊥ = 6.5d4 pc, where d = 4d4 kpc is the distance to the pulsar. The observed tail flux is 2 × 10-13 ergs s -1 cm-2 in the 0.5-8 keV band. The tail spectrum fits an absorbed power law (PL) with the photon index Γ = 2.3 ± 0.2 and 0.5-8 keV luminosity of 1 × 1033 d42 ergs s_1, for nH = 2.1 × 1022 cm -2. The tail of PSR J1740+1000 is firmly detected up to 5′ (l _ ∼ 2d1.4 pc),with a flux of 6 × 10-4 ergs cm-2 s-1 in the 0.4-10 keV band.The PLfit yields Γ = 1.4-1.5, nH 1 × 1021 cm-2, and an 0.4-10 keV luminosity of ∼2 × 1031 d1.42 ergs s_1. The large extent of the tails suggests that the bulk flow in the tails starts as mildly relativistic downstream of the termination shock and then gradually decelerates. Within the observed extent of the J1509-5850 tail, the average flow speed exceeds 5000 km s_1, and the equipartition magnetic field is a few x 10-5 G. For the J1740+1000 tail, the equipartition field is a factor of a few lower. For the high-latitude PSR J1740+1000, the orientation of the tail suggests that the pulsar was born from a halo-star progenitor. The X-ray efficiencies of the ram pressure-confined pulsar wind nebulae (PWNe) correlate poorly with the pulsar spin-down luminosities or ages. The efficiencies are systematically higher than those of PWNe around slowly moving pulsars with similar spin-down parameters.
AB - Chandra and XMM-Newton resolved extremely long tails behind two middle-aged pulsars, J1509-5850 and J1740+1000. The tail of PSR J1509-5850 is discernible up to 5.6′ from the pulsar, which corresponds to the projected length l⊥ = 6.5d4 pc, where d = 4d4 kpc is the distance to the pulsar. The observed tail flux is 2 × 10-13 ergs s -1 cm-2 in the 0.5-8 keV band. The tail spectrum fits an absorbed power law (PL) with the photon index Γ = 2.3 ± 0.2 and 0.5-8 keV luminosity of 1 × 1033 d42 ergs s_1, for nH = 2.1 × 1022 cm -2. The tail of PSR J1740+1000 is firmly detected up to 5′ (l _ ∼ 2d1.4 pc),with a flux of 6 × 10-4 ergs cm-2 s-1 in the 0.4-10 keV band.The PLfit yields Γ = 1.4-1.5, nH 1 × 1021 cm-2, and an 0.4-10 keV luminosity of ∼2 × 1031 d1.42 ergs s_1. The large extent of the tails suggests that the bulk flow in the tails starts as mildly relativistic downstream of the termination shock and then gradually decelerates. Within the observed extent of the J1509-5850 tail, the average flow speed exceeds 5000 km s_1, and the equipartition magnetic field is a few x 10-5 G. For the J1740+1000 tail, the equipartition field is a factor of a few lower. For the high-latitude PSR J1740+1000, the orientation of the tail suggests that the pulsar was born from a halo-star progenitor. The X-ray efficiencies of the ram pressure-confined pulsar wind nebulae (PWNe) correlate poorly with the pulsar spin-down luminosities or ages. The efficiencies are systematically higher than those of PWNe around slowly moving pulsars with similar spin-down parameters.
UR - http://www.scopus.com/inward/record.url?scp=52049089180&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=52049089180&partnerID=8YFLogxK
U2 - 10.1086/589145
DO - 10.1086/589145
M3 - Article
AN - SCOPUS:52049089180
SN - 0004-637X
VL - 684
SP - 542
EP - 557
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
ER -