TY - JOUR
T1 - X-raying the ultraluminous infrared starburst galaxy and broad absorption line QSO Markarian 231 with Chandra
AU - Gallagher, S. C.
AU - Brandt, W. N.
AU - Chartas, G.
AU - Garmire, G. P.
AU - Sambruna, R. M.
PY - 2002/4/20
Y1 - 2002/4/20
N2 - With 40 ks of Chandra ACIS-S3 exposure, new information on both the starburst and QSO components of the X-ray emission of Markarian 231, an ultraluminous infrared galaxy and broad absorption line QSO, has been obtained. The bulk of the X-ray luminosity is emitted from an unresolved nuclear point source, and the spectrum is remarkably hard, with the majority of the flux emitted above 2 keV. Most notably, significant nuclear variability (a decrease of ∼45% in approximately 6 hr) at energies above 2 keV indicates that Chandra has probed within light-hours of the central black hole. Although we concur with Maloney & Reynolds that the direct continuum is not observed, this variability coupled with the 188 eV upper limit on the equivalent width of the Fe Kα emission line argues against the reflection-dominated model put forth by these authors based on their ASCA data. Instead, we favor a model in which a small, Compton-thick absorber blocks the direct X-rays, and only indirect, scattered X-rays from multiple lines of sight can reach the observer. Extended soft, thermal emission encompasses the optical extent of the galaxy and exhibits resolved structure. An off-nuclear X-ray source with a 0.35-8.0 keV luminosity of LX = 7 × 1039 ergs s -1, consistent with the ultraluminous X-ray sources in other nearby starbursts, is detected. We also present an unpublished Faint Object Spectrograph spectrum from the Hubble Space Telescope archive showing the broad C IV absorption.
AB - With 40 ks of Chandra ACIS-S3 exposure, new information on both the starburst and QSO components of the X-ray emission of Markarian 231, an ultraluminous infrared galaxy and broad absorption line QSO, has been obtained. The bulk of the X-ray luminosity is emitted from an unresolved nuclear point source, and the spectrum is remarkably hard, with the majority of the flux emitted above 2 keV. Most notably, significant nuclear variability (a decrease of ∼45% in approximately 6 hr) at energies above 2 keV indicates that Chandra has probed within light-hours of the central black hole. Although we concur with Maloney & Reynolds that the direct continuum is not observed, this variability coupled with the 188 eV upper limit on the equivalent width of the Fe Kα emission line argues against the reflection-dominated model put forth by these authors based on their ASCA data. Instead, we favor a model in which a small, Compton-thick absorber blocks the direct X-rays, and only indirect, scattered X-rays from multiple lines of sight can reach the observer. Extended soft, thermal emission encompasses the optical extent of the galaxy and exhibits resolved structure. An off-nuclear X-ray source with a 0.35-8.0 keV luminosity of LX = 7 × 1039 ergs s -1, consistent with the ultraluminous X-ray sources in other nearby starbursts, is detected. We also present an unpublished Faint Object Spectrograph spectrum from the Hubble Space Telescope archive showing the broad C IV absorption.
UR - http://www.scopus.com/inward/record.url?scp=0042732172&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0042732172&partnerID=8YFLogxK
U2 - 10.1086/339171
DO - 10.1086/339171
M3 - Article
AN - SCOPUS:0042732172
SN - 0004-637X
VL - 569
SP - 655
EP - 670
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2 I
ER -