Zero-Resource Hallucination Prevention for Large Language Models

Junyu Luo, Cao Xiao, Fenglong Ma

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The prevalent use of large language models (LLMs) in various domains has drawn attention to the issue of “hallucination”, which refers to instances where LLMs generate factually inaccurate or ungrounded information. Existing techniques usually identify hallucinations post-generation that cannot prevent their occurrence and suffer from inconsistent performance due to the influence of the instruction format and model style. In this paper, we introduce a novel pre-detection self-evaluation technique, referred to as SELF-FAMILIARITY, which focuses on evaluating the model's familiarity with the concepts present in the input instruction and withholding the generation of response in case of unfamiliar concepts under the zero-resource setting, where external ground-truth or background information is not available. We also propose a new dataset Concept-7 focusing on the hallucinations caused by limited inner knowledge. We validate SELF-FAMILIARITY across four different large language models, demonstrating consistently superior performance compared to existing techniques. Our findings propose a significant shift towards preemptive strategies for hallucination mitigation in LLM assistants, promising improvements in reliability, applicability, and interpretability.

Original languageEnglish (US)
Title of host publicationEMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Findings of EMNLP 2024
EditorsYaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
PublisherAssociation for Computational Linguistics (ACL)
Pages3586-3602
Number of pages17
ISBN (Electronic)9798891761681
DOIs
StatePublished - 2024
Event2024 Findings of the Association for Computational Linguistics, EMNLP 2024 - Hybrid, Miami, United States
Duration: Nov 12 2024Nov 16 2024

Publication series

NameEMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Findings of EMNLP 2024

Conference

Conference2024 Findings of the Association for Computational Linguistics, EMNLP 2024
Country/TerritoryUnited States
CityHybrid, Miami
Period11/12/2411/16/24

All Science Journal Classification (ASJC) codes

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'Zero-Resource Hallucination Prevention for Large Language Models'. Together they form a unique fingerprint.

Cite this