TY - JOUR
T1 - ZnT4 provides zinc to zinc-dependent proteins in the trans-Golgi network critical for cell function and Zn export in mammary epithelial cells
AU - McCormick, Nicholas H.
AU - Kelleher, Shannon L.
PY - 2012/8/1
Y1 - 2012/8/1
N2 - Zinc (Zn) transporter 4 (ZnT4) plays a key role in mammary gland Zn metabolism. A mutation in ZnT4 (SLC30A4) that targets the protein for degradation is responsible for the "lethal milk" (lm/lm) mouse phenotype. ZnT4 protein is only detected in the secreting mammary gland, and lm/lm mice have ~35% less Zn in milk, decreased mammary gland size, and decreased milk secretion. However, the precise contribution of ZnT4 is unknown. We used cultured mouse mammary epithelial cells (HC11) and determined that ZnT4 was localized to the trans-Golgi network (TGN) and cell membrane and transported Zn from the cytoplasm. ZnT4-mediated Zn import into the TGN directly contributed to labile Zn accumulation as ZnT4 overexpression increased FluoZin3 fluorescence. Moreover, ZnT4 provided Zn for metallation of galactosyltransferase, a Zn-dependent protein localized within the TGN that is critical for milk secretion, and carbonic anhydrase VI, a Zn-dependent protein secreted from the TGN into milk. We further noted that ZnT4 relocalized to the cell membrane in response to Zn. Together these studies demonstrated that ZnT4 transports Zn into the TGN, which is critical for key secretory functions of the mammary cell.
AB - Zinc (Zn) transporter 4 (ZnT4) plays a key role in mammary gland Zn metabolism. A mutation in ZnT4 (SLC30A4) that targets the protein for degradation is responsible for the "lethal milk" (lm/lm) mouse phenotype. ZnT4 protein is only detected in the secreting mammary gland, and lm/lm mice have ~35% less Zn in milk, decreased mammary gland size, and decreased milk secretion. However, the precise contribution of ZnT4 is unknown. We used cultured mouse mammary epithelial cells (HC11) and determined that ZnT4 was localized to the trans-Golgi network (TGN) and cell membrane and transported Zn from the cytoplasm. ZnT4-mediated Zn import into the TGN directly contributed to labile Zn accumulation as ZnT4 overexpression increased FluoZin3 fluorescence. Moreover, ZnT4 provided Zn for metallation of galactosyltransferase, a Zn-dependent protein localized within the TGN that is critical for milk secretion, and carbonic anhydrase VI, a Zn-dependent protein secreted from the TGN into milk. We further noted that ZnT4 relocalized to the cell membrane in response to Zn. Together these studies demonstrated that ZnT4 transports Zn into the TGN, which is critical for key secretory functions of the mammary cell.
UR - http://www.scopus.com/inward/record.url?scp=84864523128&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84864523128&partnerID=8YFLogxK
U2 - 10.1152/ajpcell.00443.2011
DO - 10.1152/ajpcell.00443.2011
M3 - Article
C2 - 22621784
AN - SCOPUS:84864523128
SN - 0363-6143
VL - 303
SP - C291-C297
JO - American Journal of Physiology - Cell Physiology
JF - American Journal of Physiology - Cell Physiology
IS - 3
ER -