Zone-center phonons of bulk, few-layer, and monolayer 1T-TaS2: Detection of commensurate charge density wave phase through Raman scattering

Oliver R. Albertini, Rui Zhao, Rebecca L. McCann, Simin Feng, Mauricio Terrones, James K. Freericks, Joshua A. Robinson, Amy Y. Liu

Research output: Contribution to journalArticlepeer-review

73 Scopus citations

Abstract

We present first-principles calculations of the vibrational properties of the transition-metal dichalcogenide 1T-TaS2 for various thicknesses in the high-temperature (undistorted) phase and the low-temperature commensurate charge density wave (CDW) phase. We also present measurements of the Raman spectra for bulk, few-layer, and monolayer samples at temperatures well below that of the bulk transition to the commensurate phase. Through our calculations, we identify the low-frequency folded-back acoustic modes as a convenient signature of the commensurate CDW structure in vibrational spectra. In our measured Raman spectra, this signature is clearly evident in all of the samples, indicating that the commensurate phase remains the ground state as the material is thinned, even down to a single layer. This is in contrast to some previous studies, which suggest a suppression of the commensurate CDW transition in thin flakes. We also use polarized Raman spectroscopy to probe c-axis orbital texture in the low-T phase, which has recently been suggested to play a role in the metal-insulator transition that accompanies the structural transition to the commensurate CDW phase.

Original languageEnglish (US)
Article number214109
JournalPhysical Review B
Volume93
Issue number21
DOIs
StatePublished - Jun 16 2016

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Zone-center phonons of bulk, few-layer, and monolayer 1T-TaS2: Detection of commensurate charge density wave phase through Raman scattering'. Together they form a unique fingerprint.

Cite this